
FIRST Tech
Challenge –
Java Beyond
AP CSA

Introduction

•Courses that prepare students for the AP CSA exam cover a substantial
amount of material about the Java programming language and its
ecosystem.

•But it’s also interesting to look at the document, put out by the College
Board, that lists language features “Not tested in the AP CSA Exam, but
potentially relevant/useful”.

•Furthermore, there are some features of Java and its libraries which
can be very useful in FTC, but which are not even mentioned in this
document.

Introduction (cont.)

Today we will look at two examples:
1) How you can use the Java enum class to eliminate errors in the

handling of AprilTag id numbers.
2) How you can use the java.currency package in Autonomous to move

your robot across the field and simultaneously raise an elevator or
arm.

 Both examples include a lot of new concepts and vocabulary. They
are meant to inspire curiosity.

 All source code is freely available as shown in Appendix A.

If we have time we’ll look at a third
example

How can we get raw webcam frames out of the FTC
VisionPortal and feed them into OpenCV?
This example introduces producer-consumer concurrency via the use of the Java classes
ReentrantLock, Condition, and CountDownLatch.

Not tested in the AP CSA Exam,
but potentially relevant/useful

 We’ll take a quick look at the document from the College Board
that describes which Java constructs are included in the AP
CSA exam and which are not.

https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-
a-java-subset.pdf

https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-a-java-subset.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-a-java-subset.pdf

Themes

Use the latest version of Java supported by Android Studio to aid in the
development of software for FTC.

Practice good housekeeping – not just in naming conventions, factoring
common code into methods, maximal use of the “private” keyword, and
the organization of your code into packages, but in observing the “fail fast”
principle, i.e. catching errors sooner rather than later.

Java has not stood still

 This familiar example of Java’s verbosity:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
 }

 Can now be replaced by this:

void main() {
 System.out.println("Hello World!");
 }

Where is Java?

CenterStage is at Android API level 24 and Java level 8.

Java 8 was released in 2014; the current level is Java SE 22.0.1.

Android 14 (API 34), the most recent, is at Java level 17.

We’ll see which version of Android and Java will be supported for the 2024
– 2025 game.

For more information on what modern Java can do, look at the book Java
Coding Problems – Second Edition (Packt).

Beyond Java AP CSA - Enumeration

 The AprilTagProcessor in the FTC VisionPortal API includes a method getDetections()
that returns a List<AprilTagDetection>. Each element of the List contains an integer id
field of a detected AprilTag.

 How can we keep track of these numeric ids?

 Start with Item 34 in the book “Effective Java” by Joshua Bloch, formerly the Chief Java
Architect at Google, “Use enums instead of int constants”.

 We’ll walk through an AprilTag enum class that correlates numeric AprilTag ids with
enum values and introduces the Java Collection EnumSet<E>, the Java Streams API,
and Optional<T>, which is designed to cut down on null pointer exceptions.

https://en.wikipedia.org/wiki/Google

Enum walkthrough (1)

 Before enum types were added to JAVA, a common pattern for representing enumerated
types was to declare a group of named int constants, one for each member of the type:

 public static final int APPLE_FUJI = 0;

 public static final int APPLE_PIPPIN = 1;

 public static final int ORANGE_NAVEL = 0;

 public static final int ORANGE_BLOOD = 1;

Enum walkthrough (2)

 This technique, known as the “int enum pattern”, provides nothing in the way of type
safety. The compiler won’t complain if you pass an apple to a method that expects
 an orange, compare apples to oranges with the == operator, or worse:

 // Tasty citrus flavored applesauce!
 int i = (APPLE_FUJI - ORANGE_NAVAL) / APPLE_PIPPIN;

Enum walkthrough (3)

 Let’s look at how we might use the built-in enum class for AprilTags:

 public enum AprilTagId {
 TAG_ID_1, TAG_ID_3, TAG_ID_2 // order purposely reversed
 }

 The AprilTagProcessor in the FTC VisionPortal API includes a method
getDetections() that returns a List<AprilTagDetection>. Each element of the List
contains an integer id field of a detected AprilTag. How do we convert the numeric id
to an enum value?

Enum walkthrough (4)

 We have to modify the AprilTag enum class to associate a numeric value with each
enum value:

 public enum AprilTagId {
 TAG_ID_1(1), TAG_ID_3(3), TAG_ID_2(2)
 }

 So now what is full declaration of our AprilTag enum class? Let’s look at the AprilTagUtils
class in the IntelliJ sample project.

Enum walkthrough (5)

 We need a method that will return an enum value given its numeric id.

 public static AprilTagUtils.AprilTagId getEnumValue(int pNumericId) {
 AprilTagUtils.AprilTagId[] tagValues = AprilTagUtils.AprilTagId.values();
 for (AprilTagUtils.AprilTagId tagValue : tagValues) {
 if (tagValue.numericAprilTagId == pNumericId)
 return tagValue;
 }

 // No match.
 throw new AutonomousRobotException(TAG, "Invalid AprilTag number " + pNumericId);
 }

Enum walkthrough (6)

 But here’s a more modern way of finding the right enum value.

// Given the numeric id of an AprilTag return its enumeration.
public static AprilTagId getEnumValue(int pNumericId) {
 Optional<AprilTagId> matchingTag = EnumSet.allOf(AprilTagId.class).stream()
 .filter(tag -> tag.getNumericId() == pNumericId)
 .findFirst();

 return matchingTag.orElseThrow(() ->
 new AutonomousRobotException(TAG, "Invalid AprilTag number " +
 pNumericId));
}

Enum walkthrough (7)

 A lot of what you see here is probably unfamiliar.

 Optional<AprilTagId> matchingTag = // the Optional<T> class in

java.util

 EnumSet.allOf(AprilTagId.class) // from the Collections Framework
 .stream().filter(/* with lambda syntax */).findFirst() // from the
Streams API

 Working backwards, the Streams API gives you a way of iterating through a collection of
data without a “for” loop – and a lot more.

Enum walkthrough - Summary

 Is this a lot of work to prevent unlikely errors?

 In the case of AprilTags maybe yes, but you will have learned some useful techniques
along the way and next time you’ll be on the lookout for cases where “you need to
represent a fixed set of constants”.

 It is very worthwhile to look at the Streams API. There is a representative example
from Chapter 4 of Java in Action in the IntelliJ sample project as
StreamBasic.java. This example shows you how to traverse a collection without
loops.

Java Concurrency

 In Autonomous you want to move your robot and raise its elevator at the same time.

 Since Java 8 the way to do this is to use Java Concurrency as provided in the
java.util.concurrent package.

 In particular you will combine the classes Callable<V> and CompletableFuture<T>.

Java Concurrency (2)

Autonomo
us

Elevator
thread

Drive train
thread

Wait for both
threads to
complete

Java Concurrency (3)

Start with a method that moves the robot, for example:

straightLineMotion(targetClicks, angle, velocity);

Where “angle” is 0.0 (forward), -180.0 (back), 90.0 (strafe left), or -90.0 (strafe right).

Java Concurrency (4)

In cookbook fashion wrap the call to the method in a Java Callable<V>:

Callable<Void> callableDriveToPosition = () -> {
 straightLineMotion(1560, 90.0, .75);
 return null;
};

A Callable<V> is a Java functional interface (it has a single method). You can define an
instance of a Callable<V> using lambda syntax. A Callable<V> is intended to be
executed later, in this case in a separate thread.

Java Concurrency (5)

Also wrap the method moveElevator in a Callable<V>:

Callable<ElevatorLevel> callableMoveElevator = () -> {
return moveElevator(ElevatorLevel.LEVEL_2);
 };

The method moveElevator returns the level that the elevator actually achieved.

Java Concurrency (6)

// Launch a CompletableFuture thread for each callable:
CompletableFuture<Void> asyncMoveRobot =
Threading.launchAsync(callableDriveToPosition);

CompletableFuture<ElevatorLevel> asyncMoveElevator =
Threading.launchAsync(callableMoveElevator);

// Wait for both threads to complete:
Threading.getFutureCompletion(asyncMoveRobot);
ElevatorLevel actualLevel =
Threading.getFutureCompletion(asyncMoveElevator);

Java Concurrency (7)

 These built-in threading classes are flexible in their application. You can
add a third thread very easily, for example, if you need to move the robot,
raise the elevator, and extend an arm all at the same time.

 Look at FTCAutoThreading.java in both sample projects: IntelliJ and
Android Studio.

Java Concurrency – Next Steps

 For an overview of the java.util.concurrent package look at
https://www.baeldung.com/java-concurrency.

 Add test programs to the IntelliJ sample project and explore!

 For example: Semaphore, CountDownLatch, CyclicBarrier.

Books

 Effective Java (Addison-Wesley)

 Head First Java (O’Reilly)

 Modern Java in Action (Manning)

 Java Coding Problems – Second Edition (Packt)

Websites

 GeeksForGeeks

 Baeldung

 Jenkov

 Mkyong

 Stackoverflow

 Callicoder (CompletableFuture)

Good Housekeeping

 Not tested in the AP CSA Exam but useful in FTC:
• Keyword “final”
• visibility (public, private, package private, protected). Look at the FTC SDK examples

ConceptAprilTag (which uses the “private” keyword) vs
ConceptExploringIMUOrientation (which does not).

• Pay attention to compiler warnings, e.g. “Statement always evaluates to true”.
• Use Objects.requireNonNull, e.g. ArrayList<E> get(int index). See

https://stackoverflow.com/questions/45632920/why-should-one-use-objects-requireno
nnull.

A word on inheritance and recursion

 These are important to learn and are covered in AP CSA.

 However, look at Effective Java by Joshua Bloch, Item 16: Favor composition over inheritance.

 Recursion is common in text parsing – in robotics not so much. If you want to practice
recursion, take a look at a functional language such as Scala:

 // Factorial function definition
 def fact(n:Int): Int=
 {
 if(n == 1) 1
 else n * fact(n - 1)
 }

Appendix A: Source Code

 All source code is freely available in two sample projects:

1. Project IJFtcKickoff07Sep24 in IntelliJ – where you can test without the Robot
Controller and Driver Station and use the debugger:
https://github.com/NDHSRK/IJFtcKickoff07Sep24

2. Project FtcKickoff07Sep24 in Android Studio – where you can test in an FTC
environment with the 9.2 release of the SDK:
https://github.com/NDHSRK/FtcKickoff07Sep24

https://github.com/NDHSRK/IJFtcKickoff07Sep24
https://github.com/NDHSRK/FtcKickoff07Sep24

Appendix B: Get raw webcam frames from
the VisionPortal

 In the Android Studio sample project look at the TeleOp OpMode
WebcamFrameCapture and the VisionPortal processor that it references,
RawFrameProcessor.

 The RawFrameProcessor also makes use of the Java concurrency classes
CountDownLatch, ReentrantLock, and Condition.

